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In important early work, Stell showed that one can determine the pair correla-
tion function h(r) of the hard-sphere fluid for all distances r by specifying only
the ``tail'' of the direct correlation function c(r) at separations greater than the
hard-core diameter. We extend this idea in a very natural way to potentials with
a soft repulsive core of finite extent and a weaker and longer ranged tail. We
introduce a new continuous function T(r) which reduces exactly to the tail of
c(r) outside the (soft) core region and show that both h(r) and c(r) depend only
on the ``out projection'' of T(r): i.e., the product of the Boltzmann factor of the
repulsive core potential times T(r). Standard integral equation closures can thus
be reinterpreted and assessed in terms of their predictions for the tail of c(r) and
simple approximations for its form suggest new closures. A new and very
efficient variational method is proposed for solving the Ornstein�Zernike equa-
tion given an approximation for the tail of c. Initial applications of these ideas
to the Lennard-Jones and the hard-core Yukawa fluid are discussed.

KEY WORDS: Liquid structure; integral equation closures; thermodynamic
consistency; core and tail projections of direct correlation function.

I. INTRODUCTION

One of the many areas of current research when George Stell has made
fundamental contributions is the derivation of integral equations to deter-
mine the pair correlation function of a uniform fluid. A number of different
integral equations have been proposed, (1) often based on the graphical and
functional methods pioneered by Stell.(2) However, despite much effort and
some impressive successes, there has been a mixed record arising from their
use in different applications. For example, while the Percus�Yevick (PY)
equation(3, 4) for a fluid of hard spheres is quite accurate, it proved much
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less successful in describing the structure of systems with longer ranged
interactions such as the Lennard-Jones (LJ) fluid.(5) In most cases, we do
not have a deep understanding of the reasons for a particular equation's
success or failure. Part of the problem is that standard ``closures'' of the
integral equations usually introduce uncontrolled approximations made
mostly for mathematical convenience. Thus it is difficult to assess the physi-
cal consequences of the errors introduced and the kinds of interactions for
which a particular equation is likely to be accurate.

However, as pointed out by Stell in one of his earliest papers, (6) there
is a very simple and physically suggestive way to interpret one of the most
basic and successful of the integral equations, the PY equation for hard
spheres. Stell noted that one can completely determine the pair correlation
function h(r) of the hard sphere fluid for all distances r by specifying only
the tail or out part of the direct correlation function c(r) (i.e., its value at
separations r>d, with d the hard-core diameter of the hard spheres). Here
h and c are related by the usual Ornstein�Zernike (OZ) equation.(1) See
Section III below for precise definitions and further discussion. If, following
OZ, one further assumes that the direct correlation function has the range
of the potential, then its out part vanishes for hard spheres. Then the core
or in part of c(r) for r<d can be determined directly from the OZ equation
and the exact condition imposed by the hard-core potential that h(r)=&1
for r<d. Stell showed that the resulting h(r) computed from the OZ equa-
tion is identical to the PY solution for hard spheres. However this simple
picture directly applies only to the PY equation for hard spheres.

Stell and other workers(7) generalized this idea to apply to potentials
with a hard core and a longer ranged tail by making simple assumptions
about the functional form of the out part of c(r) and solving the OZ equa-
tion subject to the ``core condition'' h(r)= &1 inside the core. The result-
ing mean spherical approximation (MSA) and generalized MSA (GMSA)
equations have proved useful in a variety of applications. Madden and
Rice(8) showed how these ideas could be applied to systems with softer
repulsive cores with their soft MSA (SMSA) equation, though the rela-
tionship between the original hard-core condition and the treatment of soft
cores, both in the initial work and in later derivations, (1) seems (to us at
least!) somewhat unclear. Most recent work on integral equation closures
has focused attention on another function, the bridge function (see Section
VIIIC below), which is not simply related to the tail of c, and connections
to the earlier work and the insights gained therein have often not been
exploited.

In this paper we show how George Stell's original ideas(6) can be
extended in a very natural way to describe more realistic systems with finite
ranged soft-core interactions and�or weaker and longer ranged (usually
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attractive) interactions. While some of our conclusions have been noted
before, the general perspective and the formalism we develop is new. It
gives a unified and physically suggestive way of interpreting and assessing
many earlier approaches and ideas and suggests new and simpler
approximations. The main idea is to introduce a new continuous function
T(r) which reduces exactly to the tail of c(r) outside the (soft) core region.
We show that both h(r) and c(r) depend only on the ``out projection'' of
T(r): i.e., the product of the Boltzmann factor of the repulsive core poten-
tial times T(r). Essentially then, we have only to prescribe T outside the
core, i.e., fix the tail of c, to determine h and c everywhere. This conclusion
is rigorously true for hard cores, as noted in the original work of Stell and
others.(6, 7)

We thus make direct contact with a wide class of integral equations
related to the PY equation for hard spheres and the MSA and find in a
new and more straightforward way equations related to the SMSA of
Madden and Rice.(8) Our general approach suggests how to improve the
behavior of the SMSA equation at low densities and gives new insights into
reasons for the success of some of the most accurate integral equations,
including the reference hypernetted chain (RHNC) equation suggested by
Lado(9) and the method of Zerah and Hansen.(10) Equally important, many
of the inherent limitations of all these methods are clarified.

II. SYSTEM

We consider here the simple case of a one component uniform fluid
interacting through a spherically-symmetric intermolecular pair potential
w(r)=u0(r)+u1(r), where u0 is a harshly repulsive core potential with
finite range _� (so u0(r)=0 for r>_� ) and u1 is a longer-ranged and more
slowly varying (usually attractive) potential. We will refer to a system with
potential u0 alone as the reference system and the potential u1 as the pertur-
bation potential. Though many of these ideas can be directly applied to
fluids with long-ranged (e.g., Coulomb) forces, several new issues arise
there that merit a more detailed discussion, and we will restrict our work
here to the case where u1(r) goes to zero at large r faster than r&3. We also
assume in most of the following that u1 is continuous, with at least one
continuous derivative at r=_� . Examples of a pair potential divided in this
way are the separations proposed by Ree et al.(11) and by Weeks et al. (12)

for the LJ potential.
The local density at a distance r away from a particle fixed at the

origin in a fluid with average (number) density \ is given by \g(r), where
g(r) is the radial distribution function. In the following, we will use the
notation g(r; [w]) to indicate the functional dependence of g(r) on the pair
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potential w; the subscripts 0 will denote the reference system and d a hard
sphere system with diameter d. Note that g(r) becomes very small in the
core region r<_� because of the repulsive core potential u0 . In the special
case where u0 is replaced by a hard sphere interaction ud (r), then
g(r; [ud+u1])=0 for all r<d. Our goal is to determine quantitatively the
pair correlation function h(r)#g(r)&1 for the uniform fluid. Important
thermodynamic and structural information are contained in h(r) and
its calculation has been a major focus of research in the theory of
liquids.(1)

III. DIRECT CORRELATION FUNCTION

To that end most modern approaches introduce several other related
functions. Probably the most fundamental of these is the direct correlation
function c(r), defined in terms of h(r) by the Ornstein�Zernike (OZ)
equation

h(r1)=c(r1)+\ | dr2 c(r2) h( |r1&r2 | ) (1)

By iterating this equation h can be represented as a sum of chains of
``direct'' correlations c. For typical short ranged potentials, this suggests
that c could be both shorter ranged than h and simpler in structure.(1)

Indeed, Ornstein and Zernike(13) assumed that c had the range of the inter-
molecular potential in developing their theory of correlations near the criti-
cal point. While scaling theory shows that c must in fact decay as a power
law r&' at the critical point, Stell and co-workers(14) have shown that very
accurate results can be obtained for thermodynamic properties of the lat-
tice gas surprisingly close to the critical point by assuming c is strictly the
range of the potential and choosing its form to yield self-consistent ther-
modynamic predictions. Moreover, for the long ranged Coulomb potential,
assuming that c is proportional to the potential physically incorporates the
effects of screening and yields a nonlinear version of Debye�Hu� ckel
theory.(1)

We refer to the idea that c has (to a good approximation) the range
of the potential as the range assumption. A very direct but primitive
strategy for calculating h is to guess the form of the presumably simpler
function c, perhaps guided by the range assumption, and then determine h
from the OZ equation. However, Stell's interpretation of the PY equation
for hard spheres(6) suggests a simpler possibility: perhaps we have to
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prescribe only the tail of c outside the range of the harshly repulsive core
potential u0 to determine h. We now develop a general formalism incor-
porating this idea for a system with potential w(r)=u0(r)+u1(r).

IV. CORE AND TAIL PROJECTIONS USING CONTINUOUS
FUNCTIONS

To help us focus on the core and tail parts of functions, we note that
the Boltzmann (e0) and Mayer ( f0) functions for the harshly repulsive core
potential u0(r) act very nearly as projection operators onto tail or out
(r>_� ) and core or in (r<_� ) subspaces respectively, since

e0(r)#e&;u0(r)r0, r<_�
=1, r>_�

& f0(r)#1&e&;u0(r)r1, r<_�
=0, r>_�

(2)

These functions exactly satisfy one property of orthogonal projectors
for all r:

&f0(r)+e0(r)=1 (3)

and in the tail region r>_� exactly satisfy the second requirement:

& f0(r) } e0(r)=0 (4)

Moreover for small r<_� well inside the core, the repulsive potential u0 is
very large and e0 essentially vanishes. Thus Eq. (4) also holds in this region
to a very good approximation.

However, for soft cores there is a transition region for r near _� where
the r.h.s. of Eq. (4) differs significantly from zero. Thus strictly speaking the
functions & f0 and e0 are not true projection operators over all space.
Rather they divide space into two parts: a tail or out part, and a core or
in part. The latter is comprised of a transition region for r near _� and an
effective hard-core region at smaller r. The theory for soft cores we develop
works best when the spatial extent of the transition region is much smaller
than _� , as is the case for harshly repulsive interactions. In the special case
where there is a hard-core potential ud , the width of the transition region
vanishes, Eq. (4) holds exactly for all r, and the corresponding functions
& fd and ed are true projection operators. Our theory for soft cores will go
over smoothly to that for hard cores in the limit of increasing steepness of
the soft-core potential.

We now rewrite our correlation functions in projected form. Though
our primary focus has been on the pair of functions h and c, both have dis-
continuities at r=d when there is a hard-core potential ud . It is convenient
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to introduce two new functions that remain continuous even in this limit
and from which we can determine both h and c. One such function we will
use is well known and was originally used by Stell: (6)

t(r)#h(r)&c(r) (5)

t is sometimes referred to as the ``indirect correlation function'';(15) its con-
tinuity even when the potential has a hard-core region is clear since it
equals the convolution integral in the OZ equation (1). From this it follows
that the first D derivatives of t in a D-dimensional system are also con-
tinuous at r=d even for a hard-core system. For harshly repulsive core
potentials it is easy to relate c for r<_� to the core part of t: to a very good
approximation in the effective hard-core region we have

c(r)r f0(r)[1+t(r)], r<_� (6)

This equation is exact for a hard-core potential where fd and hd= &1 for
all r<d.

To determine c outside the core, we now introduce a second con-
tinuous function, which we refer to as the tail function T(r), whose out pro-
jection e0(r) T(r) reduces exactly to the tail of c in the out region. In the
core space we require that e0(r) T(r) correct the small errors in Eq. (6)
occurring in the transition region for soft cores. Thus we require for all r
that T(r) satisfy:

c(r)= f0(r)[1+t(r)]+e0(r) T(r) (7)

Moreover, since g=c+1+t, we have, using Eqs. (3) and (7)

g(r)=e0(r)[1+t(r)]+e0(r) T(r) (8)

We have thus rewritten c and g (or h) in projected form using the new
functions t and T. While special cases of these equations have been
suggested before, (6) the general utility of such a T function does not seem
to have been realized. The most important properties of the tail function T
are clear from Eqs. (7) and (8): (i) it reduces exactly to the tail of c in the
out region; (ii) both h and c depend on T only through the combination
e0T; (iii) T is continuous and differentiable.

To see that the latter holds, let us define the cavity distribution function
y(r) in the usual way:(1) y(r)#e+;w(r)g(r). Simple analysis like that men-
tioned above for t(r) (see, e.g., ref. 4) shows that y(r) is a well-defined con-
tinuous function of r with several continuous derivatives even when w itself
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has a hard-core region or other discontinuities. Using Eq. (8) we
immediately get that

y(r)=[1+t(r)+T(r)]�e1(r) (9)

Here e1(r)#e&;u1(r). Since y(r) and t(r) are continuous and differentiable
and the perturbation tail function e1(r) can be constructed to be con-
tinuous and differentiable even across a hard-core region, it follows that
T(r) is continuous and differentiable.2 When the potential has a hard-core,
Eq. (9) can alternatively be used to define T(r) for all r in terms of the
more familiar functions y, t, and e1 .

V. BASIC RESULT

Now we can refine the primitive strategy of guessing c and using the
OZ equation to calculate h, by reexpressing everything in terms of t and T.
See the Appendix for numerical details. In principle, if we prescribe T(r) for
all r then t(r) can be completely determined from the modified OZ equa-
tion. However, we see from Eqs. (7) and (8) that since both g and c (and
hence also t) depend only on e0T, the results are very insensitive to any
errors we make in prescribing T in the core space r<_� . This is obvious in
the effective hard-core region where e0 essentially vanishes. In the narrow
transition region, since T is continuous and differentiable, its values there
can be accurately determined by extrapolation from those for r-_� . In effect
then we only have to prescribe the out part of T, i.e., the tail of c, to deter-
mine both h and c everywhere. This generalizes Stell's argument(6) for the
hard-core PY equation. In the Appendix we introduce a new and very
efficient variational method that allows us to determine numerically both h
and c from the OZ equation given some approximation for the out part of
T(r). This will allow us to find accurate solutions to many standard
integral equations in a very simple way.

Note from Eq. (9) that the tail of c is not sufficient to determine y(r).
Its values for small r in the effective hard-core region depend directly on
T(r) there and we cannot expect that extrapolation from the out part of T
alone will give accurate results for T(r) well inside the core. From this
perspective, the calculation of y(r) (and other closely related functions such
as the bridge function B(r)#ln y(r)&t(r) discussed below in Section
VIIIC is a much more difficult problem, requiring the accurate determina-
tion of both the out and core parts of T(r). Fortunately the latter problem

113Tail of the Direct Correlation Function

2 More generally, we can exploit the fact that y and t have at least 2 continuous derivatives
for D=3, to relate the behavior of low order derivatives of T to those of e1 . This could be
used to give a more accurate extrapolation of T into the transition region.



does not have to be solved to find accurate results for h and c. This point
was emphasized by Stell for the hard sphere system, (6) and we see it holds
true much more generally.

VI. RELATION TO PREVIOUS WORK

Stell's original work(6) was designed to provide information about the
PY equation for a system with the general pair potential w(r). To that end,
he introduced a set of equations very similar in form to Eqs. (7), (8), and
(9), but with the crucial difference that the Boltzmann and Mayer functions
e and f for the full potential w appear, where

e(r)#e&;w(r)=e0(r) e1(r); f (r)#e&;w(r)&1= f0(r)+e0(r) f1(r)

(10)

Here f1(r)#e&;u1(r)&1. Note that f has the range of the full potential and
& f and e no longer approximate projection operators onto core and tail
regions. Stell's equations can be written as

c(r)= f (r)[1+t(r)]+e(r) d(r) (11)

g(r)=e(r)[1+t(r)]+e(r) d(r) (12)

y(r)=1+t(r)+d(r) (13)

Equation (13) can be taken as the definition of the function d(r) (we use
Stell's notation; this should not be confused with the hard sphere
diameter). Despite the superficial similarity of these equations to our
Eqs. (7), (8), and (9), d(r) in general has very different properties than our
analogous function T(r). In particular, d(r) does not reduce to the tail of
c in the out region and is likely to have a more complicated oscillatory
structure. The main utility of Eqs. (11), (12), and (13) is in analyzing the
PY equation: Stell was able to show that the usual formulation of the PY
equation for a general potential results from the approximation d(r)=0.
Unfortunately there is little reason to believe this approximation is
generally accurate.

However, in the special case of hard-core interactions where w(r)=
ud (r), Eqs. (11), (12), and (13) reduce to our Eqs. (7), (8), and (9), and
dd (r)=Td (r). The approximation dd (r)=0 in the out region for hard
spheres then can be motivated by an application of the range assumption
for the tail of c. This assumption alone is enough to determine the accurate
PY solution for hd (r). The range ansatz dd (r)=0 for r>d is exact in one
dimension (D=1) and hence yields the exact hd (r). In D=3, the first
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errors in hPY
d (r) show up at O(\2) in a density expansion. Overall hPY

d (r)
remains remarkably close to the results of computer simulations even at
higher densities, with small errors most noticeable near contact and at the
first minimum for densities near the fluid�solid transition.(1) As noted by
Stell, (6) all that is required to calculate hd (r) in general is an expression for
dd (r) in the out region. Essentially exact results for hd (r) can be obtained
from the generalized MSA (GMSA) of Waisman, (16) which assumes the
existence of a small short-ranged (Yukawa-like) tail in cd (r) for r>d.
Parameters in the tail are chosen so that hd gives results for the pressure
and compressibility that fit simulation data. The basic picture suggested by
the range assumption that the tail of cd has a simple structure and is small
and much shorter ranged than hd seems to be well established.

Stell(6) also noted that the extrapolation of the PY approximation
dd (r)=0 deep into the core space is a separate and much less accurate
approximation. For example, the resulting PY expression for yd (r) given by
Eq. (13) with dd (r)=0 for all r<d can have large errors at small r for
D=1 even though the PY result for hd (r) is exact. (While dd (r) is con-
tinuous and differentiable at r=d higher derivatives are discontinuous,
leading to a large positive value at small r for the exact dd (r) at high den-
sity.) This strongly suggests that the calculation of hd and yd should be
logically separated.(17) Of course, yd is an interesting function and addi-
tional properties like the chemical potential can be obtained from it.(1)

However, a focus on hd and cd alone permits a very simple theory, and one
can use results for the pressure and compressibility from gd (r) and cd (r)
and thermodynamic relations to calculate other thermodynamic properties.
In particular, in this approach the chemical potential should be calculated
by integrating the pressure, and not from the very inaccurate value for
yd (0) given by extrapolating dd (r)=0 deep into the core space. By intro-
ducing the tail function T(r) and the system of Eqs. (7), (8), and (9), we
have been able to extend these important ideas of Stell for hard sphere
systems(6) to systems with more general interactions.

VII. GENERAL PROPERTIES OF THE TAIL FUNCTION

We now describe some general properties of T(r). Using Eqs. (7), (8),
and (9), this can be rewritten exactly as

T(r)=c(r)& f0(r) e1(r) y(r) (14)

explicitly showing that T reduces to the tail of the direct correlation func-
tion in the out region, but has a different form in the core region. To focus
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on the changes induced by the perturbation potential u1 , it is useful to
define the excess quantities:

2T(r)#T(r)&T0(r) (15)

where T0 is the exact T function for the reference system, with similar
definitions for other excess functions such as 2h and 2c. According to the
range ansatz T0 is zero in the out region, and we expect that the exact T0

will in general be small and vanish rapidly at larger r outside the core.
Thus in the out region T(r)r2T(r), and is mainly determined by the
potential tail u1(r).

Based on an analysis by Stell, (18) it is generally believed that away
from the critical point the asymptotic form of c(r) at large r is

c(r)t&;u1(r) (16)

For system with a weak and slowly varying potential tail u1 that goes
smoothly to zero at large r this is consistent with the idea that the OZ
equation should reduce to linear response theory far from the core region.
Here ; is the inverse of Boltzmann's constant times the temperature. Thus
we expect 2T(r)t&;u1(r) far from the core.

At very low density \ graphical expansion methods show that the
exact form of c(r) for interaction potentials going to zero faster than r&3

can be written as:

c(r)= f (r)[1+\4(r)]+O(\2) (17)

where

4(r12)=| dr3 f (r13) f (r32) (18)

Note that the range assumption for c is rigorously true at low density.
Similarly it is easy to show that

t(r)=\4(r)+O(\2) (19)

y(r)=1+\4(r)+O(\2) (20)

and

T(r)= f1(r)[1+\4(r)]+O(\2) (21)

It follows from Eq. (21) that T0(r)=0+O(\2).
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VIII. CLOSURES AND THE TAIL FUNCTION

Most integral equation theories for h(r) are based on the idea of a
closure:(1) a second relation between h and c which, when combined with
the OZ equation, allows one to solve for the values of h and c. However
most closures are expressed in terms of more complicated functions like
y(r) or B(r) and their form is usually determined by mathematical con-
siderations. See, e.g., Section VIIIE below. The above results show that to
calculate h(r) we can focus on the simpler projected function e0(r) T(r),
determined essentially only by the tail of c(r). An exact choice will yield an
exact h and approximate choices can be motivated by the range ansatz and
the general supposition that the tail of c has a simple structure. As dis-
cussed in the Appendix, we can also exploit the relatively simple nature of
the out part of T(r) in the numerical solution of the resulting integral
equations. Other standard closures can be reinterpreted and sometimes
simplified by looking at their predictions for the tail of c.

A. Soft Mean Spherical Approximation

Probably the simplest such prediction directly yields the SMSA
integral equation.(8) The SMSA assumes that the limiting linear response
value for the tail of c given in Eq. (16) holds for all r in the out region.
Thus we set

e0(r) T SMSA(r)=e0(r)[&;u1(r)] (22)

in Eqs. (7) and (8). In the out region we have T SMSA
0 =0 and 2T SMSA=

&;u1(r). The resulting expressions for h and c can easily be shown to be
equivalent to the original SMSA results, which were written in a different
form. If u1=0 then the SMSA reduces to the PY equation for the reference
system. The approximation T SMSA

0 =0 in the out region again can be
motivated by the range assumption. When u0 is replaced by a hard-core
potential ud then Eqs. (7) and (8) with Eq. (22) reduce to the original hard-
core MSA. This derivation and interpretation of the SMSA and its relation
to the MSA seems much simpler than that found in previous work.

One way to improve the SMSA is to improve its description of
repulsive forces. Equation (22) sets T SMSA

0 =0 in the out region. If a more
accurate expression for T0 is known this could be used along with the MSA
approximation 2T SMSA= &;u1 in the r.h.s. of Eq. (22). For hard cores the
GMSA(16) should give a very accurate expression for Td (r). Its use in the
r.h.s. of Eq. (22) for a system with potential w=ud+u1 would yield a
theory essentially equivalent to the optimized random phase (ORPA)
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theory of Andersen and Chandler, (19) where exact hard sphere correlation
functions are supposed to be used along with a MSA treatment of u1 .

The SMSA gives rather accurate results for the high density LJ fluid
and correctly describes the qualitative changes in 2h#h&h0 induced by
u1 . However, it is much less accurate at low densities. This can be under-
stood since Eq. (22) does not reduce to the exact result, Eq. (21), at low
densities. An improved theory would result from approximations for T(r)
that interpolate between the exact low density limit, Eq. (21), and Eq. (22)
at high density. We will describe several such theories below.

B. PY and HNC Equations

Other integral equation closures can be reexpressed in terms of their
predictions for the out part of T. In many cases this can give us insights
into their strengths and weaknesses. For example, by rewriting the
standard expression gHNC=exp(&;w+t) given by the hypernetted chain
(HNC) equation(1) in the projected form of Eq. (8), we find that the HNC
closure predicts

T HNC=exp(&;u1+t)&(1+t) (23)

This agrees with the exact Eq. (21) at low density. However, when applied
to the reference system, Eq. (23) predicts that T HNC

0 =exp(t0)&(1+t0).
Since t0 is large and oscillatory at higher density in the out region, this
strongly violates the range assumption. Indeed the HNC equation gives
very poor results for a dense hard sphere system. Experience has shown
that the HNC closure does a much better job of describing slowly varying
interactions, and for systems with long-ranged Coulomb forces it is often
the theory of choice.(1) As discussed below one of the most accurate
integral equation theories, the RHNC theory, (9) combines a HNC treat-
ment of the more slowly varying potential u1 along with an (in principle)
exact treatment of reference system correlations.

The PY closure for the reference system incorporates the range
assumption and gives a much better description of reference system correla-
tions than does the HNC. However, for the full system it predicts for the
out part of T:

T PY= f1(1+t) (24)

This again agrees with Eq. (21) at low density. However at higher density
the oscillations in t and the strong nonlinear dependence on the perturba-
tion potential will yield a larger and more oscillatory tail for c than
suggested by the SMSA in Eq. (22). In practice the simple linear response
form of the SMSA gives much more accurate results at high density.(8)
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C. Bridge Function

Most recent integral equation closures focus attention on another con-
tinuous and differentiable function, the bridge function B(r), which can be
defined formally as(1)

B(r)#ln y(r)&t(r) (25)

Thus g(r)#exp[&;w(r)+t(r)+B(r)]. B(r) represents the sum of a well-
defined set of Mayer cluster diagrams, and the HNC equation results from
the approximation B(r)=0. B plays a role analogous to our function T in
generating closures, and we shall see that some of its relevant properties
can be understood more easily from those of T. Thus one can represent h,
c, and y in terms of the pair of functions B and t. If B is specified by
some closure ansatz, then these functions can be calculated using the OZ
equation.

Alternatively, using Eqs. (7), (8), and (9), we can exactly express B in
terms of t and T:

B(r)=ln[1+t(r)+T(r)]&[t(r)&;u1(r)] (26)

Thus B depends on T itself rather than the projected function e0T, and in
that sense is a more complicated function than h or c. Indeed determining
its form, particularly inside the core, has proved a very difficult challenge
both for theory and simulation, and definitive results are still not
known.(20) However, since the out part of B in Eq. (26) can determine the
out part of T, we can effectively concentrate only on the out part of B if
we restrict ourselves to theories for h and c.

In general, the out part of B has a rather complicated oscillatory struc-
ture. For example, for the reference system we have exactly in the out
region, using the definition of t, and the equality of the tails of c and T,

B0(r)=ln[1+h0(r)]&h0(r)+T0(r), r>_� (27)

Since the exact T0 is almost certainly small and very short ranged, as
suggested by the range ansatz and the success of the PY equation for
repulsive forces, B0 will have longer ranged oscillations determined by
those of the pair correlation function h0 . Setting T0=0 in Eq. (27) yields
the PY expression for the reference system bridge diagrams.

However, in many cases the oscillatory tail of B(r) for the full system
seems to depend only weakly on the perturbation potential u1(r), so that
B(r)rB0(r). This idea has been called the universality of the bridge func-
tion, (21) with B0 often approximated by Bd , the bridge function of an
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appropriately chosen hard sphere system.3 The following argument gives
some insight into why this could be a reasonable approximation for the out
part of B. Analogous to Eq. (27), we have exactly

B(r)=ln[1+h(r)]&h(r)+[T(r)+;u1(r)], r>_� (28)

At high density, the structure is dominated by repulsive forces for systems
with short-ranged interactions(12) and it is a fairly good approximation to
set h(r)rh0(r) (``universality'' of the correlation functions!) Moreover the
success of the SMSA suggests that T(r)r&;u1(r) and T0(r)r0 are also
reasonable approximations in the out region. Then Eqs. (27) and (28) yield
B(r)rB0(r) in the out region. Note that this result is exact at low density
since B=0+O(\2). Thus for this class of systems, we can arrive at the idea
of approximate bridge function universality outside the core using the more
physically transparent arguments of the SMSA. Differences in the results
for the two theories should be small at high density. It can be seen using
the general expression for B in Eq. (26) that these arguments do not hold
for the core part of B and we see no reason to expect any such ``univer-
sality'' at higher densities there.

D. RHNC Equation

Alternatively, if we assume it is a good approximation to set
B(r)rB0(r) in the out region, then for systems where h(r)rh0(r) we have
T(r)r&;u1(r) from Eqs. (27) and (28), which is the SMSA closure. At
low density h(r)rh0(r) is not accurate, and the true T(r) must differ
significantly from the SMSA prediction. Indeed using the exact low density
forms for h and h0 along with B(r)=B0(r) in Eqs. (27) and (28) yields the
exact low density form for T given in Eq. (21). Thus a theory incorporating
B(r)rB0(r) in the out region will give exact results for h at low density
and should give results at high density close to those of the accurate
SMSA.
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This is what is done in the RHNC theory of Lado, (9) and overall this
is one of the most successful integral equation methods known. The
standard RHNC closure can be written as

gRHNC(r)=exp[&;w(r)+t(r)+B0(r)] (29)

thus replacing the exact bridge function B by B0 . To describe its predic-
tions in terms of T, it is convenient to consider excess functions like that
defined in Eq. (15). We find

e0(r) 2T RHNC(r)=g0(r)[exp[&;u1(r)+2t(r)]&1]&e0(r) 2t(r) (30)

Note that we only require accurate values for g0(r) and not for B0(r) well
inside the core to determine this fundamental quantity in our approach.4

A numerical solution can be found using the general variational method
described in the Appendix.

To examine the relation between the RHNC and the SMSA more
quantitatively, let us define

2T(r)#&;u1(r)+!(r) (31)

For the SMSA !SMSA(r)=0 in the out region. We find that in the out
region !RHNC(r) can be written exactly as

!RHNC(r)=2h(r)&ln[2h(r)�g0(r)+1], r>_� (32)

This agrees with exact results from Eqs. (21) at low density and corrects
the poor behavior of the SMSA there. At higher density, !RHNC represents
an additional oscillatory component in the tail of T when compared to the
SMSA. However, when 2h is small, as is generally the case at high density
for the systems we consider, then !RHNC is small (with !RHNC vanishing
whenever 2h(r)=0). Thus 2T RHNC

r2T SMSA=&;u1 in the out region at
high density, as argued above.

E. Unique Function Ansatz

Several workers have tried to find more accurate expressions for B(r)
by assuming it is some unique local function(22) of t(r), as suggested by
several approximate closures that gave good results for systems with short
ranged repulsive interactions.(23) LLano-Restrepo and Chapman (LC)
showed for systems with an attractive potential tail u1 that this assumption
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was generally inaccurate at small r in the core region and also was inac-
curate at high density outside the core.(24) They proposed that there could
exist some ``renormalized'' function t~ (r) involving u1 such that B is a local
function of t~ . They found that the choice

t~ (r)=t(r)&;u1(r) (33)

gave accurate results at high density in the out region for the LJ fluid. This
is precisely what would have been suggested by applying the SMSA closure
T(r)=&;u1(r) to the exact Eq. (26) in the out region.

However, the SMSA approximation for T is not accurate well inside
the core space and indeed the renormalized function gave poor results
there. Moreover the SMSA approximation for T is inaccurate at low den-
sity where the exact T reduces to f1 . Indeed this shows that the local
function ansatz for B cannot in general be correct even outside the core.
Duh and Haymet(20) and Duh and Henderson(25) have proposed different
density dependent separations of the total potential: w(r)=u~ 0(r; \)+
u~ 1(r; \), with ``reference'' (u~ 0) and ``perturbation'' (u~ 1) parts chosen such
that Eq. (33), now defined with u~ 1 , could give more accurate results for B
as a local function of t~ , even well inside the core where LC's original
suggestion most noticeably failed. It is clear from Eq. (26) that the unique
function ansatz can give exact results at low density only if the perturba-
tion u~ 1(r; \) vanishes as \ � 0 since then T � T0=0, as shown in refs. 20
and 25. Assessing the nature of errors induced by the unique function
approximation in general remains a very difficult task. For our purposes
here it seems simpler and more direct to retain the original physically
motivated separation and focus instead on the out part of T, whose density
dependence is such that T reduces to f1 at low density while approximating
&;u1 at high density.

IX. CLOSURES SATISFYING CONSISTENCY CONDITIONS

A natural idea is to consider more general density-dependent expres-
sions for T that can vary between these limits, as suggested by the RHNC
equation. Parameters in the interpolation function can be chosen to fit
simulation data or to satisfy various thermodynamic consistency conditions
(Maxwell relations and sum rules) which the exact correlation functions
must obey. We first discuss one of the most successful integral equation
approaches, the method of Zerah and Hansen (ZH) from this perspec-
tive, (10) and then introduce a new and simplified method which implements
this idea in a very direct fashion. Results seem very promising. Contact is
also made with very recent work by Stell and coworkers.(26)
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A. HMSA Equation

ZH introduced a generalized ``HMSA'' closure that interpolates non-
linearly between the SMSA closure at small r and the HNC closure at large
r, with a parameter in the interpolation function chosen to give consistent
results for the pressure computed from the virial and compressibility for-
mulas.(10) The choice of the HNC theory at large distances was motivated
by its superior behavior for systems with long-ranged forces. The ZH
closure can be rewritten as the following expression for T in the out region:

T ZH(r)=
exp[F:(r)[t(r)&;u1(r)]]&1&F:(r) t(r)

F:(r)
(34)

where F:(r) is an r-dependent interpolation function,

F:(r)=1&exp(&r�r:) (35)

and r: a fitting parameter chosen to achieve thermodynamic consistency.
For F: � 0 (i.e., for r�r: � 0) Eq. (34) reduces to the SMSA closure &;u1

and for F: � 1 (i.e., for r�r: � �) Eq. (34) reduces to the HNC closure,
Eq. (23), though Eq. (35) implies a rather slow transition between these
limits for physically relevant values of r: .

For the systems we consider here with short-ranged interactions, the
important feature of Eq. (34) is not the behavior of the HNC equation at
large distances but the fact that at low densities T HNC reduces to the exact
result, Eq. (21). ZH found numerically for the LJ fluid that r: decreased as
the density tended to zero, so the HNC closure is effectively used at all rele-
vant r at very low density. At higher density r: increases, thus mixing in
more and more of the SMSA expression. For example, near the triple point
(at a reduced density of 0.85 and a reduced temperature of 0.786) ZH
found that r:=6.25_.(10) The ZH interpolation scheme provides a
mechanism by which one can go between these limits as the density
changes while maintaining enough flexibility in the shape of T outside the
core that thermodynamic consistency for the pressure can be achieved.

B. Tail Interpolation Method

Both the ZH equation and the RHNC equation discussed above in
Section VIIID give accurate results at both high and low densities by con-
sidering some rather complicated density dependent expressions for the out
part of T, which in particular involve t(r). See Eqs. (34) and (30). The
variational method discussed in the Appendix can be used to solve the OZ
equation when the out part of T is a known function of r, as is the case for
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the SMSA approximation. Because of the appearance of the initially
unknown function t(r) in the ZH and RHNC expressions for T(r), we can-
not use this method alone to solve these equations. However, by making an
initial guess for the out part of T, we can iterate until the value of the out
part of T does not change. This method combines the standard Picard
iteration scheme for the hopefully slowly varying out part of T with the
efficient variational method for the core parts of functions. While we have
found that this method generally works quite well, it still requires much
more computer time than does the direct variational solution of the OZ
equation with a known out part of T. Moreover because of the complicated
nonlinear nature of the self-consistency condition and the direct interplay
between possible oscillations in t and T in the out region it is not clear that
self-consistent solutions can always be found for physically relevant states.
Indeed the RHNC equation fails in a quite peculiar way(27) close to the
vapor-liquid coexistence region.

We now introduce a new method, which we call the tail interpolation
method (TIM), that implements the idea of a density dependent interpola-
tion involving f1 and &;u1 very directly, while using a very simple (t inde-
pendent) expression for the out part of T. We assume the out part of 2T
can be written as:

2T TIM(r)=:f1(r)+(1&:)[&;u1(r)] (36)

where : is a (temperature and density dependent) parameter that is chosen
so that consistent results for two different routes to one particular ther-
modynamic quantity are obtained. (To obtain the full T the out part of T0

should be added to Eq. (36); often the SMSA-PY approximation T0=0
gives sufficient accuracy.) Note that the presumably exact asymptotic form
for the tail of c(r) given in Eq. (16) is maintained for any choice of :, and
: is not required to lie between zero and one. In general, varying : allows
us to change the shape of the tail of c at intermediate distances while main-
taining the proper asymptotic form, and we use this freedom to achieve
partial thermodynamic self-consistency. At low density :=1 and, given the
relative accuracy of the SMSA, we expect that at high densities smaller
values of : will be found.

In this paper we impose consistency between the virial and com-
pressibility routes to the isothermal compressibility. Belloni(28) has shown
that this can be implemented very efficiently by differentiating the OZ
equation, and our variational method can be easily extended to this case.
We have not yet examined in any detail the merits of this choice over other
possible consistency conditions. Indeed the SMSA usually gives rather poor
results both for the virial pressure and for the compressibility, (30) and the

124 Katsov and Weeks



energy route is typically used to give more accurate thermodynamic
results.(26) It is easy to derive a variational method to impose ther-
modynamic consistency from the energy route and we suspect this will give
even better results. However, in this initial study we have imposed con-
sistency on the isothermal compressibility to see whether self-consistency
using the very simple expression for T(r) given in Eq. (36) can improve on
the rather poor performance of the SMSA for this quantity. The
preliminary data we report in the next section illustrates the basic concept
and suggests that further work is indeed merited.

X. NUMERICAL RESULTS

We test our approach on two well-studied systems: the hard-core
Yukawa fluid (HCYF) and the LJ fluid. The HCYF has been the focus of
recent theoretical work(26) and represents a system where errors from the
treatment of soft cores do not arise, while the LJ fluid is a typical soft-core
system.

A. HCYF

The interaction potential in the HCYF is given by:

wHCYF(r)=ud (r)+=
e&z(r&d )

r�d
(37)

where d is the hard sphere diameter. We choose z=1.8�d, which
corresponds to a well-studied system.(29, 30) We have solved the TIM equa-
tions using the variational method described below in the Appendix. For
greater accuracy in treating the hard sphere correlations at high density, we
have included a GMSA like expression for Td in the out region, as
described in the Appendix. Only preliminary results are reported here. In
Fig. 1 we give values for the compressibility factor ;P�\ compared to the
results of a MD simulation study.(30) We emphasize that the com-
pressibility factor has been calculated directly from the virial formula for
pressure and not obtained through thermodynamic relations from the
energy route, as is usually done in ORPA and MSA approaches for greater
accuracy. In the inset to Fig. 1 we present the dependence of the TIM self-
consistency parameter : on temperature and density. Isotherms T*=2.0
and T*=1.5 are supercritical, and T*=1.0 is subcritical.5 At low densities
: approaches the exact limit :=1, while at higher densities : becomes
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Fig. 1. Dependence of the compressibility factor ;P�\ on density \* and temperature T* for
the Yukawa fluid. Open symbols represent the results of MD simulations(29) and filled sym-
bols are the predictions of the TIM approximation. Lines are guides to the eye. In the inset:
dependence of the self-consistency parameter : in the TIM approach on density \* and
temperature T*.

Fig. 2. Density correlation functions of the hard-core Yukawa fluid. From top to bottom:
(\*=0.8, T*=0.9), (\*=0.4, T*=1.25), (\*=0.05, T*=1.0). MC simulations performed
in this work. For the sake of clarity, curves have been shifted in the vertical direction.
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Fig. 3. Density correlation functions of the Lennard-Jones fluid. From top to bottom:
(\*=0.54, T*=1.35), (\*=0.45, T*=1.35), (\*=0.1, T*=1.35). MD simulations are
taken from ref. 30. For the sake of clarity, curves have been shifted in the vertical direction.

smaller though differing from zero (the MSA limit). The behavior at inter-
mediate densities where : reaches a maximum is interesting and was not
anticipated by us. The behavior of the TIM very near the critical point and
spinodal lines has not been examined.

To test the accuracy of the correlation functions predicted by the TIM,
we compare them to the results of new MC simulations we have carried
out.6 In Fig. 2 we show h(r) given by the TIM, the ORPA, and an even
simpler self-consistent approach (SC2) very similar to that used by Stell
and coworkers, (26) where T SC2(r)=:[&;u1(r)], with : is chosen to satisfy
self-consistency of the virial and compressibility routes to the com-
pressibility. Since the SC2 tail does not have enough flexibility to reduce to
f1 at low density, we expect that its correlation functions may be less
accurate there. The results show the relatively inaccuracy of the ORPA at
intermediate and low densities, with best results seen at high density. The
SC2 approach, while giving accurate self-consistent thermodynamics, yields
less accurate correlation functions at low densities, as expected.

B. LJ Fluid

We have also solved the TIM equations for the LJ fluid for a few
states, using the WCA separation of the pair potential.(12) For the relatively
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low density states we study here, the SMSA-PY approximation for the
reference system T0=0 gives sufficient accuracy. In Fig. 3 we compare
predictions of TIM and SMSA approximations to MD simulations
results.(31) The states shown correspond to low and moderate densities at
about the critical temperature. Again the TIM approach gives notable
improvement over the SMSA theory, especially at low densities.

XI. FINAL REMARKS

Many issues in the theory of integral equations for fluid structure can
be profitably analyzed and interpreted in terms of predictions for the out
part of the tail function T(r), i.e., the tail of the direct correlation function.
In this paper we have only considered a single component uniform fluid
with short ranged interactions. Here the simplest possible MSA linear
response approximation relating the tail of T(r) to the perturbation poten-
tial u1(r) immediately yields the SMSA theory. For systems with harshly
repulsive forces only, the SMSA reduces to the successful PY theory. For
systems with a weak potential tail u1(r), the SMSA gives rather accurate
results at high density but fails at low density. The behavior at low den-
sities can be greatly improved by introducing a density dependence into the
tail of T(r) such that it reduces to the exact low density result of Eq. (21),
as is effectively done in the RHNC and HMSA equations. We introduced
here a new self-consistent (TIM) method that incorporates this idea in a
much simpler form, and the preliminary results for the LJ fluid and the
HCYF appear promising.

The success of all these methods at high density arises from the fact
that for the systems considered attractive forces have only a relatively small
effect on the liquid structure, so that h(r)rh0(r) is a fairly good
approximation. Put another way, the density fluctuations can be well
described by a simple Gaussian theory.(37) When this is not true, as is the
case for nonuniform liquids, (39) particularly in cases of wetting and drying
phenomena, the natural (singlet) generalizations of all these integral equa-
tion methods fail.(38) We simply do not know a good enough guess for the
tail of T(r) in cases where attractive forces induce such significant struc-
tural changes. New approaches based on a self-consistent mean field treat-
ment of the attractive interactions appear more promising here.(39)

A more severe test of these ideas and of the utility of integral equations
in general for uniform fluids is in applications to systems with long-ranged
Coulomb interactions. Here one must deal with fluid mixtures with strong
and long-ranged attractive and repulsive interactions, and the correlation
functions differ in significant ways from those of any reference system with
short-ranged forces. Nevertheless, characteristic properties of systems with
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long-ranged forces, such as the Stillinger-Lovett moment conditions are
very naturally expressed in terms of the tail of the direct correlation func-
tion.(1) The RHNC and HMSA approximations have often proved useful
here, and even the simple SMSA captures Debye screening, perhaps the
most fundamental feature of the long-ranged force problem. We hope that
some the ideas presented here for the T function can be extended to long-
ranged force systems to provide a more intuitive understanding of the
strengths and weaknesses of existing integral equation approaches, and aid
in the development of new and simpler approximations.

APPENDIX A. VARIATIONAL METHOD

1. Fixed Tail Function

We can look on the OZ equation (1) as indirectly relating the con-
tinuous functions T(r) and t(r). Thus, given T(r) we can in principle solve
for t(r) and then determine h(r) and c(r) from Eqs. (7) and (8). We first
consider the simplest case, exemplified by the SMSA, where the out part of
T(r) is a fixed prescribed function, independent of other correlation func-
tions and�or the density. Then we show how to generalize this approach for
an arbitrary choice of T(r), which can be coupled to other correlation func-
tions such as t(r). In the latter application our approach represents a new
way to solve standard integral equations, and we believe it offers some
notable advantages over conventional methods.

It is easy to rewrite the OZ equation (1) in terms of t and c. Taking
Fourier transforms we have

t̂(k)=
\ĉ2(k)

1&\ĉ(k)
(A1)

where ĉ(k) denotes the Fourier transform of c(r). As noted above, only the
``out projection'' e0(r) T(r) is actually relevant for h and c. Given this,
Eq. (7) shows that we need to fix only the ``core projection'' f0(r) t(r) to
determine c(r) for all r. In principle, t(r) can then be determined
everywhere from the modified OZ equation (A1). A proper self-consistent
choice for t(r) inside the core must yield the same functional form when it
is computed indirectly using the OZ equation (A1). This requirement can
be formulated very efficiently in terms of a variational procedure.

In the following analysis e0(r) T(r) is held constant and variations in all
functions are generated solely by variations in t(r) restricted to the core
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region r<_� . According to Eq. (7), variations of c(r) and t(r) then are
linearly related:

$c(r)= f0(r) $t(r) (A2)

To arrive at the proper variational functional, we first formally integrate
the r.h.s. of Eq. (A1) with respect to ĉ, thus arriving at a functional

8OZ= &
1

(2?)3 | [\2ĉ2(k)�2+\ĉ(k)+ln[1&\ĉ(k)]] dk (A3)

whose general variation with respect to ĉ can be simplified using the
modified OZ equation (A1):

$8OZ=&
1

(2?)3 | _\2ĉ(k)+\&
\

1&\ĉ(k)& $ĉ(k) dk

=
\2

(2?)3 | t̂(k) $ĉ(k) dk (A4)

Using Parseval's formula, and considering the special variation of c given
by Eq. (A2), we have

$8OZ=\2 | f0(r) t(r) $t(r) dr (A5)

which expresses the result in terms of the imposed variation of t inside the
core. In Eq. (A5), t(r) satisfies the OZ equation (A1). We now consider a
second functional of t:

8dir=&
\2

2 | f0(r) t2(r) dr (A6)

whose variation directly gives the negative of the r.h.s. of Eq. (A5). Thus by
construction, the functional

8#8OZ+8dir (A7)

obtained by adding Eqs. (A3) and (A6) is stationary (and reaches its mini-
mum) when the proper self-consistent value for t(r) inside the core is used.

To implement this variational method, we expand the core part of t(r)
for r<_� in terms of Legendre polynomials, orthogonal on [0, _� ]:

t(r)= :
n

i=1

anPn(r), r<_� (A8)
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We choose values of the coefficients an to minimize the functional 8 in
Eq. (A7). We have used Powell's quadratically convergent method to
implement the minimization procedure.(32) If needed, one could improve
this step of the calculation by using conjugate gradient methods. In prac-
tice, our implementation is very efficient, and t is smooth enough that it is
generally sufficient to use nr5 to get highly accurate results. For example,
for hard-core systems &(1+t)=c inside the core, and the exact solution
of PY equation for hard spheres gives a c that is a cubic polynomial.(1)

Fast Fourier Transform methods(32) are used in evaluating Eq. (A3).
One important general feature of our method is that we expand the

smooth function t inside the core rather than c. As discussed above, for
hard-core systems these two procedures are equivalent, and our method
then reduces exactly to the variational method Andersen and Chandler(19)

used to solve the hard-core MSA and ORPA equations. However, for soft-
core systems, while c(r) is simply related to t(r) well inside the core, it
changes rapidly in the narrow transition region, close to rr_� . Higher
order polynomials are required to describe this rapid localized variation of
c accurately. This problem becomes more and more severe with increasing
steepness of the reference system potential. However t changes smoothly
and slowly even in the transition region. This is illustrated in Fig. 4, where
we show t(r) and c(r) both for the full LJ system, calculated using the self-
consistent TIM method discussed in Section IXB, and for the LJ reference
system using the SMSA (PY) approximation. The same qualitative features

Fig. 4. Comparison of the shape of c(r) and t(r) for the reference and full Lennard-Jones
fluid (\*=0.54, T*=1.35). This shows the advantage of using t(r) as a variational function
instead of c(r) as used in ref. 32.
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are seen both at lower and higher densities and using other accurate
closures. Previous variational methods proposed for soft-core systems(33, 34)

have either expanded c(r) inside the core or h(r) itself.

2. Arbitrary Tail Function

To solve integral equations for an arbitrary prescription for T(r) con-
taining initially unknown functions like t(r) (see, e.g., Eqs. (24), (23), and
(30) for the PY, HNC, and RHNC equations) we can combine the varia-
tional technique with an iterative method. First, we make an initial guess
T (0)(r) for the out part of T, and solve the variational problem as above
for this fixed choice. This will yield new values for t and other correlation
functions. Then, the next approximation T (1)(r) can be determined for a
given closure and the obtained correlation functions. The new approxima-
tion is used in the next variational step and this iteration procedure is
repeated until convergence of the tail of T(r) is obtained. Again one could
replace the iterative steps by more sophisticated methods.(35) However,
since the out part of T has a relatively simple structure, we have found the
simple iterative method works quite well in all cases we have tested.

3. Thermodynamic Self-Consistency

By introducing a dependence of T(r) on one free parameter we can
ensure (partial) self-consistency of thermodynamic properties. Here we
extend our variational method to impose consistency between the virial
and compressibility routes to the isothermal compressibility:

/V
T (\, ;)=/C

T (\, ;) (A9)

Here

/V
T (\, ;)=\�;PV

�\ +;
=1&

�
�\ \

;\2

6 | r
dw(r)

dr
g(r) dr+ (A10)

/C
T (\, ;)=\ 1

1&\ĉ(k)+k=0

(A11)

To evaluate /V
T (\, ;) we need an efficient way to calculate �g(r)��\. Just as

we did for g(r) we can use a variational method.
To simplify notation, let us denote the density derivative of a function

f (r; \) as f $\(r)#�f (r; \)��\. The OZ equation (A1) and relation (7) can be
directly differentiated:
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t̂ $\(k)=
ĉ2(k)+\ĉ(k)[2&\ĉ(k)] ĉ$\(k)

[1&\ĉ(k)]2 (A12)

c$\(r)= f0(r) t$\(r)+e0(r) T $\(r) (A13)

g$\(r)=t$\(r)&c$\(r) (A14)

To solve (A12) and (A13) one needs to know the function T $\(r).
In the simplest approach, this derivative is neglected, because its density
dependence is usually very weak. This has been referred to as local con-
sistency.(28) Alternatively, one can first calculate T(r) with T $\(r) set to zero
and then compute its density derivative by a finite difference method by
evaluating T(r) at slightly different densities. The results can be plugged
back into (A13) and the equations iterated until convergence to globally
consistent results, like those in ref. 26, are found.

In calculations of correlation functions of the HCYF we have intro-
duced a small correction to the out part of T(r), which corresponds to a
proper description of the pure hard-sphere system (the limiting case of
HCYF as ; � 0). This correction has the usual GMSA-like Yukawa
form(16)

Td (r)=Kd (\) exp[&zd (\)(r&d )]�r (A15)

with Kd (\) and zd (\) chosen to satisfy consistency of the virial and com-
pressibility pressure and the Carnahan-Starling equation of state. In prac-
tice, we used results of Tang and Lu, (36) who derived very accurate
(approximate) explicit analytic expressions for Kd (\) and zd (\). Using
these, one can explicitly evaluate the density derivative of Td (r), thus
ensuring global self-consistency for the hard-core reference system of the
HCYF.
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